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A rigorous, yet practical semiclassical formulation of time correlation functions or expectation values is
presented. The main idea is to combine the forward and backward propagation steps into a single semiclassical
propagator for those degrees of freedom that are not probed in a calculation, while retaining an explicit
two-propagator description of the observable low-dimensional system. The combined forward-backward treat-
ment of the environment naturally leads to extensive cancellation and results in an action that is small on the
scale of Planck’s constant. As a consequence, the integrand is smooth and thus amenable to Monte Carlo
sampling. At the same time, important nonclassical effects terms, arising from interference among multiple
bounce solutions of the system component, are fully accountefiSb063-651X99)50905-7

PACS numbdss): 02.50.Ng, 03.65.Sq

Since the early days of quantum mechanics, the develogunctions or expectation values. This can be thought of as
ment of a theory that merges the gap between the wave equarising from the stationary phase limit of the path integral
tion and Newton’s laws has attracted considerable attentiorexpression for the observed system of interest, while retain-
The Wentzel-Kramers-BrillouinJeffreys [WKB(J)] method  ing a forward-backward description for the environment. The
and its time-dependent analog, the semiclassical propagatdgsulting expression is evaluated in a coherent state represen-
offer a sufficiently satisfactory connection in the smialle-  tation by a combination of Monte Carlo and quadrature tech-
gime. In spite of well-known problems with the semiclassicalMques. Numerical calculations |II_ustrate the advantages and
wave function near caustics, the WKB energy levels and feasibility of the present formulation. .
the Van Vleck propagatdil,2] are exact for several model For concreteness we focus on correlation functions of the
problems(see, for exampld3]). Furthermore, the semiclas- tyPe
sical propagator has been shown to be highly accurate in . .
nontrivial situationg4], providing a very desirable alterna- C(t)=Tr(p(0)AeHUiB gAY, )
tive to full quantum dynamics for many-body problems.
However, numerical implementation of time-dependent
semiclassical theory has in the past been problematic. One
the major drawbacks of the Van Vleck expression is that th ) .
relevant trajectories must satisfy double-ended boundar e observable lsystem whose conjugate momenturr).ls de-
value conditions. Alternative formulations have been devel'0ted asp. SettingA=B=r, Eq. (1) becomes a position
oped which use initial value representatiofd, coherent co'relation function, while the choicg=1, B=r yields the
stateg 6], or cellular dynamic$7] to avoid computationally expectation value of the position operator. For simplicity of
intensive root searches. Another severe problem is the highl qtat|on_we treat th? system as one—(_j|m§an3|onal throughout
oscillatory structure of the semiclassical propagator, whic is Rapid Communication. A generalization of the obtained

obviates the use of importance sampling procedures and thgXPressions to t_he case_whares a coIIe_ctlon .Of a small
limits applications to low-dimensional problems. Until re- number of coordinateftypically, a three-dimensional vector

cently, calculations involving more than two degrees of freeOF @ component therepis straightforward. The remaining

dom have been possible only via the use of filtering method;%iegrees of freedom that are not probed in the calculdtren

[8], mixed order scheme®], or linearized approximations solvent”) are denoted collectively by the canonically con-
[10’]_ ' jugate variables represented by theimensional vector®

d'gmd P. Finally, we note that the present formulation can eas-
ily be generalized to describe other correlation functions or
feduced density matrices.

herep(0) is the density operator of the initial ensemble and
andB are operators that depend only on the positiaf

Recently, we introduced a rigorous semiclassical metho
ology for calculating influence functionals arising from
many-body environments in the context of a path integral : ) . i . .
description of the system of intereft1,17. Rather than Equ_at|on(1) is written in the following coordinate repre-
introducing approximations to ameliorate the sign problem,sentat'on:
our approach is based on the observation that the forward
and backward time evolution operators of unprobed degrees .
of freedom can be combined into a single semiclassical C(t)_f drof drtf drff dROf dR‘f dRy
propagation. While the forward step gives rise to an action B
integral that can be large, subsequent propagation in the X(roRol p(0)[rROA(r1){r¢R¢|e™"[rRy)
backward time direction generally results ina net act_lon that X(r Ry e M| r RoYB(r). )
is small. As a consequence, the integrand is only mildly os-
cillatory and thus amenable to Monte Carlo sampling.

The present Rapid Communication develops a fully semiUsing the semiclassical expression to approximate both
classical forward-backward formulation of time correlation propagators in the last equation leads to the form
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c)= [ dro [ dr, [ dr, [ aR, [ aR, [ dRyroRolp (@) ROA BT

i
x> (2wih>-<““>’2(detM1>—1’2exp(gsfor[r§.R;])

forward
+o+
pathsr Ry

x> <2wiﬁ><“*1>’2<detwl2)1’2exp(,'i—sbacwrcl,Rd])- &)

backward
pathsr R

Hererj(t")R(t") andr(t")R,(t") are paths in the for- arising from multiple bounce solutions to the forward and
ward and backward time direction with phase space entdackward propagation problems, are wiped out. This is
points (opoRoPo.rp; RP;) and (p:R:P;,r¢psR:Ps), re- deemed a reasonable approximation for the solvent degrees
Spective|y, Whilesfor and Sback are the Corresponding action of freedom, and is fU”y consistent with the Splrlt of the semi-
functionals. The matrices entering the Van Vleck determi-classical approximation to thigorward time propagator.

nants are given by the expressions To complete the stationary phase calculation we expand
the action locally through quadratic terms about the station-
ary phase point of the solvent trajectory, keeping the system
component, of the midpoint fixed. Integration oveR, in-

ary  ary arg  drg

&_po a_Po &_pt a_Pt troduces the factor
M= IR, IR and M;= dR¢  Rg

apo  Pg apy 9P

d 2Sfor—back) - 1/2, ( 6)

i g \N2
(4) (2mih) (det IRIR,

Finally, the Maslov phase is absorbed in the square roots in ) ,
order to simplify the notation. The highly oscillatory charac- Where Srorpack is the sum of forward and backward actions.

ter of the integrand in Eq(3) prevents its evaluation by Noting that this procedure maps the local dynamics of the
Monte Carlo methods. solvent onto that of a time-dependent harmonic oscillator,

We now proceed to perform the integral over the interme-©ne finds that the stationary phase factor is equal to
diate solvent poinR; using the stationary phase approxima-
tion. By virtue of the relations

aZSf 1/2 &Zsb 1/2
2 " or " ack
(27T|ﬁ) del(?Ro(?Rt) delﬁRtﬂRf
asfor aSback
=P’/ = — 2 -1/2
7R, P/ and IR, P, (5 y det& Stor-back ' @)
IRyIR;

the stationary phase condition impli€& —P,=0, i.e., the

solvent component of the trajectory is continuous. This feaThis result also arises directly from the group property of the
ture, which is the key advantage of the present approachpropagator within the stationary phase approximation. It fol-
arises becaus@y definition the solvent degrees of freedom lows that the result of the stationary phase evaluation of the
are not being interrogated. Note that some crossing term#tegral in Eq.(3) is

C(t):f drof drtf drff dRof dR{A(r{)B(ry){roRo|p(0)|r¢R¢)

i
WARW VWV + =
X Z E 2 Dfor Dbac for-backexl{%sfor-bacl{rcl Tl aRcI] ’ (8)
forward systembackward systenforward-backward
paths r; pathsry; solvent pathsRg
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where the prefactors are given by the expressions coincidence of the forward and backward trajectories implies
2 that the total action vanishes and the complex exponential in
DY = (27if)~ Y detM )—1/2( det&—Rt) the integrand of Eq8) becomes equal to unity. On the other
for ! Py) hand, if the above end point condition is not satisfied, the

" absgnce of stationary phase reg_ions leads tc_) the van?shing of
DW= (27i#)” Y% detM )1/2< detﬁ—Rf> (93) the integral and thus the domains of the highly oscillatory
back 2 P integrand need not be samplédihis very sharp condition on
1 the most important regions of the integrand will be broad-
detﬁ—Rf) (9b) ened in the coherent state representation to be adopted be-
dPg low.) Finally, note that significant quantum effects may arise
from interference among classical trajectories of the observ-
dynamics(FBSD) formulation of time correlation functions able .s_ystem thqt do not satisfy the above statlonary ph‘f"se
in the coordinate representation. f:ondltloq. For this reason we prgfer to e_valuate the midpoint
Apart from reducing the number of integrals for each sol-Ntégral in Eq.(8) by numerical integration rather than the
vent degree of freedom from three in E8) to two, the main  Stationary phase method. Pairs of different forward-
advantage of the FBSD formulation given by E8) is that Packward system paths will give rise to nonzero action inte-
the overall action is not very large on the scale of Planck’sdrals; however, the fact that the solvent component of each
constant and, therefore, the integrand is no longer higthncluded trajectory is still continuous leads to extensive can-
oscillatory. To see this, consider evaluating the integral ovegellation, resulting in actions that are much smaller than
r by the stationary phase method. The stationary phase poititese in the integrand of E(B). This fact was shown to have
occurs when the final momentupf of r j(t') is equal to the ~ a dramatic effect of smoothing the integrand of the forward-
initial momentump; of the backward trajectory(t'), in backward influence functional in our recent wgdkl,12.
other words, when these paths combine to a single continu- Still, Eq. (8) is not in a convenient form for numerical
ous forward-backward classical trajectory in the space of alfalculations because the trajectories are specified by double-
variables. Note that in the present boundary condition repreended boundary value conditions. This problem is overcome
sentation such a stationary phase point exists only if the enuh initial value representations. Specifically, E§) can be
points match exactly, i.e., if;=r, andR;=R,. However, cast in the following coherent state representaf®j

DY pac= (27if) "2

Equation(8) constitutes the forward-backward semiclassical

i
C(t):(ZTTﬁ)_(MZ)J df1f dplj drzf dpzf dRof dPODCOheXF(%Sfor—bacl{r:j T Ral

X(9(r1,p1)G(Rg,Po)|p(0)A|G(R¢,PH)a(ra+,P21)){(9(r2,p2)|Bla(r1s,P1f))- (10

Hereg and G are coherent states described by the wave functions

2')’ 1/4 i
<r|g(r0,po)>=(?> eXF{_ Y(V_"o)2+gpo(r_"o)), (11a
2 n/4 |
(RlG(RO,P0)>=<;> (detF)l"‘exr{—(R—R0)~F~(R—R0)+%P@(R—RO)), (11b)

whereT is a diagonal matrix and" is an appropriate space point I(, {p, (R;P;) as the time returns to zero. The

prefactor. Note that the stationary phase condition is modigoherent state matrix element of the oper&ds evaluated

fied in the coherent state representation where the trajectoriggaytically, while the density matrix element is obtained

are spec_med by ||j|t|al rather than _boundary copdmons. using a high-temperature approximation, an imaginary time
Equation(10) gives the correlation function in terms of rPeath integral description, or a classical path representation, as

two phase space integrals for the system of interest and o ; : .
phase space integral for each solvent degree of freedorﬁppmp“ate[lz]' As was alluded to earlier, the propagation

These phase space variables specify the initial conditions §f trajectories along the combined forward-backward con-
the required classical trajectories. Starting &p{RoP), a tou_r leads t_o extensive cancellation, resulting in an overall
classical trajectory is launched in the forward time direction 2ction that is generally small on the scale of Planck’s con-
which reaches the pointr {;p;¢RP,) at the timet. Subse- Stant

quently, the system component of the position and momen- TO illustrate the practicality of the FBSD scheme we
tum are changed to the valuas,), while the solvent vari- ~present below the results of propagating a Gaussian wave
ables remain at the valueR(P;) and the trajectory is packet in the following Hamiltonian of three coupled anhar-
continued in the backward time direction, reaching the phaseionic oscillators:
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H=3 (p*+PL+P)+ 3 (wfr*+ wiR{+ w3RY)
—0.1r34+0.0r*—c;rR;—CorR,, (12) 0.5

with wy=v2, w;=w,=1, andc;=c,=0.1. The initial wave
packet has a width that is equal to that of the ground state of
the harmonic fit about the minimum of this potential, and is
displaced by the amount8=1 andR{=R3=2. The results 0.5
presented in Fig. 1, obtained with 20 000 Monte Carlo points
per integration variable, demonstrate that the FBSD scheme
leads to rapid convergence over several periods of oscilla- -1
tion. In addition, the semiclassical results are in excellent
agreement with those obtained from full quantum mechani-
cal calculations using a split propagator metfa@8]. This FIG. 1. Expectation value of the system position for the three-
behavior is very encouraging. dimensional Hamiltonian given in Eq12). Markers: results of the

In summary, the FBSD formulation of time correlation FBSD scheme with 20000 Monte Carlo samples per integration
functions presented in this Rapid Communication eXp|0it§/ariable. The. error bars are approximately equal to the ;ize of thg
the structure of ensemble averaged time correlation function®arkers. Solid line: exact quantum results generated via the split
or expectation values to naturally eliminate the rapid oscillaroPagator method.

tions of the integrand. This is achieved by observing that the)nase method, allowing explicit treatment of the interference
time evolution operators of those degrees of freedom that argeqyeen the forward and backward propagators arising from
not probed directly can be combined in a single operatory, tine hounce trajectories. For these reasons, the FBSD
which is evaluated semiclassically via trajectories that evolvg-heme appears promising as a robust, yet rigorous, numeri-

along a single forward-backward time contour. The backy| 19| for studying the real time dynamics of many-body
ward propagation step results in a net action that is generallgystems_

small and thus the oscillations of the integrand are dramati-
cally diminished. At the same time, the midpoint integral for  This work was financially supported by the David and
the system of interest is not performed via the stationanfucille Packard Foundation.
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