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Rigorous forward-backward semiclassical formulation of many-body dynamics
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A rigorous, yet practical semiclassical formulation of time correlation functions or expectation values is
presented. The main idea is to combine the forward and backward propagation steps into a single semiclassical
propagator for those degrees of freedom that are not probed in a calculation, while retaining an explicit
two-propagator description of the observable low-dimensional system. The combined forward-backward treat-
ment of the environment naturally leads to extensive cancellation and results in an action that is small on the
scale of Planck’s constant. As a consequence, the integrand is smooth and thus amenable to Monte Carlo
sampling. At the same time, important nonclassical effects terms, arising from interference among multiple
bounce solutions of the system component, are fully accounted for.@S1063-651X~99!50905-7#

PACS number~s!: 02.50.Ng, 03.65.Sq
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Since the early days of quantum mechanics, the deve
ment of a theory that merges the gap between the wave e
tion and Newton’s laws has attracted considerable attent
The Wentzel-Kramers-Brillouin~-Jeffreys! @WKB~J!# method
and its time-dependent analog, the semiclassical propag
offer a sufficiently satisfactory connection in the small\ re-
gime. In spite of well-known problems with the semiclassic
wave function near caustics, the WKB~J! energy levels and
the Van Vleck propagator@1,2# are exact for several mode
problems~see, for example,@3#!. Furthermore, the semiclas
sical propagator has been shown to be highly accurat
nontrivial situations@4#, providing a very desirable alterna
tive to full quantum dynamics for many-body problem
However, numerical implementation of time-depende
semiclassical theory has in the past been problematic. On
the major drawbacks of the Van Vleck expression is that
relevant trajectories must satisfy double-ended bound
value conditions. Alternative formulations have been dev
oped which use initial value representations@5#, coherent
states@6#, or cellular dynamics@7# to avoid computationally
intensive root searches. Another severe problem is the hi
oscillatory structure of the semiclassical propagator, wh
obviates the use of importance sampling procedures and
limits applications to low-dimensional problems. Until r
cently, calculations involving more than two degrees of fre
dom have been possible only via the use of filtering meth
@8#, mixed order schemes@9#, or linearized approximations
@10#.

Recently, we introduced a rigorous semiclassical meth
ology for calculating influence functionals arising fro
many-body environments in the context of a path integ
description of the system of interest@11,12#. Rather than
introducing approximations to ameliorate the sign proble
our approach is based on the observation that the forw
and backward time evolution operators of unprobed deg
of freedom can be combined into a single semiclass
propagation. While the forward step gives rise to an act
integral that can be large, subsequent propagation in
backward time direction generally results in a net action t
is small. As a consequence, the integrand is only mildly
cillatory and thus amenable to Monte Carlo sampling.

The present Rapid Communication develops a fully se
classical forward-backward formulation of time correlati
PRE 591063-651X/99/59~5!/4729~4!/$15.00
p-
a-

n.

or,

l

in

.
t
of
e
ry
l-

ly
h
us

-
s

d-

l

,
rd
es
al
n
he
t
-

i-

functions or expectation values. This can be thought of
arising from the stationary phase limit of the path integ
expression for the observed system of interest, while ret
ing a forward-backward description for the environment. T
resulting expression is evaluated in a coherent state repre
tation by a combination of Monte Carlo and quadrature te
niques. Numerical calculations illustrate the advantages
feasibility of the present formulation.

For concreteness we focus on correlation functions of
type

C~ t !5Tr„r~0!AeiHt /\Be2 iHt /\
…, ~1!

wherer~0! is the density operator of the initial ensemble a
A andB are operators that depend only on the positionr of
the observable system whose conjugate momentum is
noted asp. Setting A5B5r , Eq. ~1! becomes a position
correlation function, while the choiceA51, B5r yields the
expectation value of the position operator. For simplicity
notation we treat the system as one-dimensional through
this Rapid Communication. A generalization of the obtain
expressions to the case wherer is a collection of a small
number of coordinates~typically, a three-dimensional vecto
or a component thereof! is straightforward. The remainingn
degrees of freedom that are not probed in the calculation~the
‘‘solvent’’ ! are denoted collectively by the canonically co
jugate variables represented by then-dimensional vectorsR
andP. Finally, we note that the present formulation can e
ily be generalized to describe other correlation functions
reduced density matrices.

Equation~1! is written in the following coordinate repre
sentation:

C~ t !5E dr0E drtE dr fE dR0E dRtE dRf

3^r 0R0ur~0!ur fRf&A~r f !^r fRf ueiHt /\ur tRt&

3^r tRtue2 iHt /\ur 0R0&B~r t!. ~2!

Using the semiclassical expression to approximate b
propagators in the last equation leads to the form
R4729 ©1999 The American Physical Society
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C~ t !5E dr0E drtE dr fE dR0E dRtE dRf^r 0R0ur~0!ur fRf&A~r f !B~r t!

3 (
forward

paths r cl
1Rcl

1

~2p i\!2~n11!/2~detM1!21/2expS i

\
Sfor@r cl

1 ,Rcl
1# D

3 (
backward

paths r cl
2Rcl

2

~2p i\!2~n11!/2~detM2!21/2expS i

\
Sback@r cl

2 ,Rcl
2# D . ~3!
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Here r cl
1(t8)Rcl

1(t8) and r cl
2(t8)Rcl

2(t8) are paths in the for-
ward and backward time direction with phase space
points (r 0p0R0P0 ,r tpt8RtPt8) and (r tptRtPt ,r fpfRfPf), re-
spectively, whileSfor andSback are the corresponding actio
functionals. The matrices entering the Van Vleck determ
nants are given by the expressions

M15S ]r t

]p0

]r t

]P0

]Rt

]p0

]Rt

]P0

D and M25S ]r f

]pt

]r f

]Pt

]Rf

]pt

]Rf

]Pt

D .

~4!

Finally, the Maslov phase is absorbed in the square root
order to simplify the notation. The highly oscillatory chara
ter of the integrand in Eq.~3! prevents its evaluation by
Monte Carlo methods.

We now proceed to perform the integral over the interm
diate solvent pointRt using the stationary phase approxim
tion. By virtue of the relations

]Sfor

]Rt
5Pt8 and

]Sback

]Rt
52Pt , ~5!

the stationary phase condition impliesPt82Pt50, i.e., the
solvent component of the trajectory is continuous. This f
ture, which is the key advantage of the present appro
arises because~by definition! the solvent degrees of freedo
are not being interrogated. Note that some crossing te
d

i-

in

-

-
h,

s,

arising from multiple bounce solutions to the forward a
backward propagation problems, are wiped out. This
deemed a reasonable approximation for the solvent deg
of freedom, and is fully consistent with the spirit of the sem
classical approximation to the~forward time! propagator.

To complete the stationary phase calculation we exp
the action locally through quadratic terms about the stati
ary phase point of the solvent trajectory, keeping the sys
componentr t of the midpoint fixed. Integration overRt in-
troduces the factor

~2p i\!n/2S det
]2Sfor-back

]Rt]Rt
D 21/2

, ~6!

whereSfor-back is the sum of forward and backward action
Noting that this procedure maps the local dynamics of
solvent onto that of a time-dependent harmonic oscilla
one finds that the stationary phase factor is equal to

~2p i\!n/2S det
]2Sfor

]R0]Rt
D 1/2S det

]2Sback

]Rt]Rf
D 1/2

3S det
]2Sfor-back

]R0]Rf
D 21/2

. ~7!

This result also arises directly from the group property of
propagator within the stationary phase approximation. It f
lows that the result of the stationary phase evaluation of
integral in Eq.~3! is
C~ t !5E dr0E drtE dr fE dR0E dRfA~r f !B~r t!^r 0R0ur~0!ur fRf&

3 (
forward system

paths r cl
1

(
backward system

paths r cl
2

(
forward-backward
solvent pathsRcl

D for
VVDback

VV D for-back
VV expS i

\
Sfor-back@r cl

1 ,r cl
2 ,Rcl# D , ~8!



ca

ol

k’
h
ve
o

in
a
r

e

lies
l in

er
the
g of
ry

d-
be-

ise
rv-
ase
int
e
rd-
te-
ach
an-
an

rd-

l
ble-
me

RAPID COMMUNICATIONS

PRE 59 R4731RIGOROUS FORWARD-BACKWARD SEMICLASSICAL . . .
where the prefactors are given by the expressions

D for
VV5~2p i\!21/2~detM1!21/2S det

]Rt

]P0
D 1/2

,

Dback
VV 5~2p i\!21/2~detM2!21/2S det

]Rf

]Pt
D 1/2

, ~9a!

D for-back
VV 5~2p i\!2n/2S det

]Rf

]P0
D 21/2

. ~9b!

Equation~8! constitutes the forward-backward semiclassi
dynamics~FBSD! formulation of time correlation functions
in the coordinate representation.

Apart from reducing the number of integrals for each s
vent degree of freedom from three in Eq.~3! to two, the main
advantage of the FBSD formulation given by Eq.~8! is that
the overall action is not very large on the scale of Planc
constant and, therefore, the integrand is no longer hig
oscillatory. To see this, consider evaluating the integral o
r t by the stationary phase method. The stationary phase p
occurs when the final momentumpt8 of r cl

1(t8) is equal to the
initial momentumpt of the backward trajectoryr cl

2(t8), in
other words, when these paths combine to a single cont
ous forward-backward classical trajectory in the space of
variables. Note that in the present boundary condition rep
sentation such a stationary phase point exists only if the
points match exactly, i.e., ifr f5r 0 and Rf5R0 . However,
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coincidence of the forward and backward trajectories imp
that the total action vanishes and the complex exponentia
the integrand of Eq.~8! becomes equal to unity. On the oth
hand, if the above end point condition is not satisfied,
absence of stationary phase regions leads to the vanishin
the integral and thus the domains of the highly oscillato
integrand need not be sampled.~This very sharp condition on
the most important regions of the integrand will be broa
ened in the coherent state representation to be adopted
low.! Finally, note that significant quantum effects may ar
from interference among classical trajectories of the obse
able system that do not satisfy the above stationary ph
condition. For this reason we prefer to evaluate the midpo
integral in Eq.~8! by numerical integration rather than th
stationary phase method. Pairs of different forwa
backward system paths will give rise to nonzero action in
grals; however, the fact that the solvent component of e
included trajectory is still continuous leads to extensive c
cellation, resulting in actions that are much smaller th
these in the integrand of Eq.~3!. This fact was shown to have
a dramatic effect of smoothing the integrand of the forwa
backward influence functional in our recent work@11,12#.

Still, Eq. ~8! is not in a convenient form for numerica
calculations because the trajectories are specified by dou
ended boundary value conditions. This problem is overco
in initial value representations. Specifically, Eq.~8! can be
cast in the following coherent state representation@6#:
C~ t !5~2p\!2~n12!E dr1E dp1E dr2E dp2E dR0E dP0DcohexpS i

\
Sfor-back@r cl

1 ,r cl
2 ,Rcl# D

3^g~r 1 ,p1!G~R0 ,P0!ur~0!AuG~Rf ,Pf !g~r 2 f ,p2 f !&^g~r 2 ,p2!uBug~r 1 f ,p1 f !&. ~10!

Hereg andG are coherent states described by the wave functions

^r ug~r 0 ,p0!&5S 2g

p D 1/4

expS 2 g~r 2r 0!21
i

\
p0~r 2r 0! D , ~11a!

^RuG~R0 ,P0!&5S 2

p D n/4

~detG!1/4expS 2~R2R0!•G•~R2R0!1
i

\
P0•~R2R0! D , ~11b!
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where G is a diagonal matrix andDcoh is an appropriate
prefactor. Note that the stationary phase condition is mo
fied in the coherent state representation where the traject
are specified by initial rather than boundary conditions.

Equation~10! gives the correlation function in terms o
two phase space integrals for the system of interest and
phase space integral for each solvent degree of freed
These phase space variables specify the initial condition
the required classical trajectories. Starting at (r 1p1R0P0), a
classical trajectory is launched in the forward time directio
which reaches the point (r 1 f p1 fRtPt) at the timet. Subse-
quently, the system component of the position and mom
tum are changed to the values (r 2p2), while the solvent vari-
ables remain at the values (RtPt) and the trajectory is
continued in the backward time direction, reaching the ph
i-
ies

ne
m.
of

,

n-

e

space point (r 2 f p2 fRfPf) as the time returns to zero. Th
coherent state matrix element of the operatorB is evaluated
analytically, while the density matrix element is obtain
using a high-temperature approximation, an imaginary ti
path integral description, or a classical path representation
appropriate@12#. As was alluded to earlier, the propagatio
of trajectories along the combined forward-backward co
tour leads to extensive cancellation, resulting in an ove
action that is generally small on the scale of Planck’s c
stant.

To illustrate the practicality of the FBSD scheme w
present below the results of propagating a Gaussian w
packet in the following Hamiltonian of three coupled anha
monic oscillators:
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H5 1
2 ~p21P1

21P2
2!1 1

2 ~v0
2r 21v1

2R1
21v2

2R2
2!

20.1r 310.01r 42c1rR12c2rR2 , ~12!

with v05&, v15v251, andc15c250.1. The initial wave
packet has a width that is equal to that of the ground stat
the harmonic fit about the minimum of this potential, and
displaced by the amountsr 051 andR1

05R2
052. The results

presented in Fig. 1, obtained with 20 000 Monte Carlo poi
per integration variable, demonstrate that the FBSD sch
leads to rapid convergence over several periods of osc
tion. In addition, the semiclassical results are in excell
agreement with those obtained from full quantum mecha
cal calculations using a split propagator method@13#. This
behavior is very encouraging.

In summary, the FBSD formulation of time correlatio
functions presented in this Rapid Communication explo
the structure of ensemble averaged time correlation funct
or expectation values to naturally eliminate the rapid osci
tions of the integrand. This is achieved by observing that
time evolution operators of those degrees of freedom that
not probed directly can be combined in a single opera
which is evaluated semiclassically via trajectories that evo
along a single forward-backward time contour. The ba
ward propagation step results in a net action that is gene
small and thus the oscillations of the integrand are dram
cally diminished. At the same time, the midpoint integral f
the system of interest is not performed via the station
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phase method, allowing explicit treatment of the interferen
between the forward and backward propagators arising f
multiple bounce trajectories. For these reasons, the FB
scheme appears promising as a robust, yet rigorous, num
cal tool for studying the real time dynamics of many-bo
systems.

This work was financially supported by the David an
Lucille Packard Foundation.

FIG. 1. Expectation value of the system position for the thr
dimensional Hamiltonian given in Eq.~12!. Markers: results of the
FBSD scheme with 20 000 Monte Carlo samples per integra
variable. The error bars are approximately equal to the size of
markers. Solid line: exact quantum results generated via the
propagator method.
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